SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.

نویسندگان

  • Ning Gu
  • Hua Hu
  • Koen Vervaeke
  • Johan F Storm
چکیده

Calcium-activated K(+) channels of the K(Ca)2 type (SK channels) are prominently expressed in the mammalian brain, including hippocampus. These channels are thought to underlie neuronal excitability control and have been implicated in plasticity, memory, and neural disease. Contrary to previous reports, we found that somatic spike-evoked medium afterhyperpolarizations (mAHPs) and corresponding excitability control were not caused by SK channels but mainly by Kv7/KCNQ/M channels in CA1 hippocampal pyramidal neurons. Thus apparently, these SK channels are hardly activated by somatic Na(+) spikes. To further test this conclusion, we used sharp electrode, whole cell, and perforated-patch recordings from rat CA1 pyramidal neurons. We found that SK channel blockers consistently failed to suppress mAHPs under a range of experimental conditions: mAHPs following single spikes or spike trains, at -60 or -80 mV, at 20-30 degrees C, in low or elevated extracellular [K(+)], or spike trains triggered by synaptic stimulation after blocking N-methyl-d-aspartic acid receptors (NMDARs). Nevertheless, we found that SK channels in these cells were readily activated by artificially enhanced Ca(2+) spikes, and an SK channel opener (1-ethyl-2-benzimidazolinone) enhanced somatic AHPs following Na(+) spikes, thus reducing excitability. In contrast to CA1 pyramidal cells, bursting pyramidal cells in the subiculum showed a Na(+) spike-evoked mAHP that was reduced by apamin, indicating cell-type-dependent differences in mAHP mechanisms. Testing for other SK channel functions in CA1, we found that field excitatory postsynaptic potentials mediated by NMDARs were enhanced by apamin, supporting the idea that dendritic SK channels are activated by NMDAR-dependent calcium influx. We conclude that SK channels in rat CA1 pyramidal cells can be activated by NMDAR-mediated synaptic input and cause feedback regulation of synaptic efficacy but are normally not appreciably activated by somatic Na(+) spikes in this cell type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells.

In hippocampal pyramidal cells, a single action potential (AP) or a burst of APs is followed by a medium afterhyperpolarization (mAHP, lasting approximately 0.1 s). The currents underlying the mAHP are considered to regulate excitability and cause early spike frequency adaptation, thus dampening the response to sustained excitatory input relative to responses to abrupt excitation. The mAHP was ...

متن کامل

Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells.

Kv7/KCNQ/M channel subunits are widely expressed in peripheral and central neurons, where they give rise to a muscarinic-sensitive, subthreshold, and noninactivating K+ current (M current). Immunohistochemical data suggest that Kv7/M channels are expressed in both axons, somata and dendrites, but their distinctive roles in these compartments are not known. Here we used intracellular microelectr...

متن کامل

HCN1 Channels Constrain Synaptically Evoked Ca2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons

HCN1 hyperpolarization-activated cation channels act as an inhibitory constraint of both spatial learning and synaptic integration and long-term plasticity in the distal dendrites of hippocampal CA1 pyramidal neurons. However, as HCN1 channels provide an excitatory current, the mechanism of their inhibitory action remains unclear. Here we report that HCN1 channels also constrain CA1 distal dend...

متن کامل

Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines

The roles of voltage-sensitive sodium (Na) and calcium (Ca) channels located on dendrites and spines in regulating synaptic signals are largely unknown. Here we use 2-photon glutamate uncaging to stimulate individual spines while monitoring uncaging-evoked excitatory postsynaptic potentials (uEPSPs) and Ca transients. We find that, in CA1 pyramidal neurons in acute mouse hippocampal slices, CaV...

متن کامل

M-channels (Kv7/KCNQ channels) that regulate synaptic integration, excitability, and spike pattern of CA1 pyramidal cells are located in the perisomatic region.

To understand how electrical signal processing in cortical pyramidal neurons is executed by ion channels, it is essential to know their subcellular distribution. M-channels (encoded by Kv7.2-Kv7.5/KCNQ2-KCNQ5 genes) have multiple important functions in neurons, including control of excitability, spike afterpotentials, adaptation, and theta resonance. Nevertheless, the subcellular distribution o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 5  شماره 

صفحات  -

تاریخ انتشار 2008